
 1 of 19 081202

Introduction
The standard file system of any embedded system is usually small in size. The storage space of the Tiny
Internet Interfaces (TINI®) platform is no exception. TINI’s file system resides in the on-board RAM
and is limited by the size of this RAM. Because of this constraint, it is important to provide alternatives
for data storage.

This application note describes a technique for adding an external file system. By providing a method of
accessing other file systems, TINI users no longer are limited in the type and amount of information they
can process. Since TINI also uses its RAM as its operating heap, using a remote file system allows more
of the RAM to be used for running applications.

Once a file system has been mounted, there appears to be no difference between a file that resides on the
local file system and one that is external. All interactions with files occur through the standard
java.io classes and the com.dalsemi.fs.DSFile class.

System Overview
There are three steps to implementing an external file system. First, the
com.dalsemi.fs.FileSystemDriver interface must be implemented. This class can use a native
library, rely on a server running elsewhere (like the example included in this application note), or any
number of other options. Second, the class (or classes) must be made available to any process that uses
the external file system. This can be done by placing a copy of the class in TINI’s classpath or by
building it directly into any application that will use the new file system. Finally, the file system needs to
be mounted. This is done by either calling the com.dalsemi.fs.DSFile.mount() method from inside
an application or using the mount command in slush.

The com.dalsemi.fs.FileSystemDriver interface has been written so that a variety of
systems can be implemented. The developer has the freedom to handle files in a manner that is
appropriate for his design. Possibilities include a Network File System (NFS), an FTP file system where
files are written to and read from an FTP server, or an IDE disk drive connected to TINI. This example
uses a custom design that uses TINI’s on-board TCP/IP network stack to access files from a remote
server. Figure 1 shows the system’s configuration. TINI’s file system holds a reference to the file system
driver. Whenever a remote file is accessed, the appropriate method in the driver is called. The driver
then communicates with the remote host over the network to process the request.

Application Note 709
Adding An External File

System to TINI
www.maxim-ic.com

AN709

 2 of 19

Figure 1. System Block Diagram

 TINI

FILE SYSTEM

REMOTE FS
DRIVER

SERVER

REMOTE FS
HOST

INTERNET/
ETHERNET

TINI Software
NetworkFileSystemDriver is the class that implements the com.dalsemi.fs.FileSystemDriver
interface. The driver’s init() method is called automatically whenever a file system is mounted. This
gives the driver an opportunity to perform any initialization that might be necessary. Some examples
include resetting and initializing hardware, allocating buffers, and establishing network connections. In
this example, the init() method attempts to establish a socket connection with the remote server
specified in the parameters. Upon a successful connection, the server sends a new port number that the
driver must use to send file system commands. This allows the original port to remain open for
additional connections.

DataInputStream in = null;
DataOutputStream out = null;
Socket sck = null;

public void init(String[] args) throws Exception
{
 //args[0] is IP address of file system server.
 //args[1] is the port to connect to.

 int port = Integer.parseInt(args[1]);
 int newPort = 0;
 try
 {
 sck = new Socket(args[0], port);

 //Once connected the server will send back a new port to connect
 //to. This way the original server port will remain available
 //for additional connections.
 in = new DataInputStream(sck.getInputStream());
 newPort = in.readInt();
 }
 finally
 {
 if(in != null) {in.close();}
 if(sck != null) {sck.close();}
 }

 //Open the new socket and get its input and output streams.
 //We'll wrap them in Data streams for convenience.
 sck = new Socket(args[0], newPort);
 in = new DataInputStream(sck.getInputStream());
 out = new DataOutputStream(sck.getOutputStream());
}

AN709

 3 of 19

The unmount() method of the driver is called when the file system is unmounted. The driver should
use this method to release any resources it may be using (e.g., buffers, network connections, ports, etc.).
In the example presented here, the driver attempts to notify the server it is about to disconnect. The
driver then closes the connection it has with the server.

public void unmount()
{
 try
 {
 try
 {
 //Send the command byte.
 //This will notify the server it can close its end.
 out.writeByte(CLOSE);
 }
 finally
 {
 //We don't care what the server does, we still need to close our end.
 in.close();
 out.close();
 sck.close();
 }
 }
 catch(IOException x)
 {
 }
}

The remaining methods in the class are all file system operations (e.g., open, close, read, write, etc.).
Each follows the flow chart shown in Figure 2. These methods were kept as simple as possible in order
to put most of the workload onto the server. An example implementation of one of the file system
operations (File.exists()) is given below.

//out is a DataOutputStream for the command socket between the client and host.
//in is a DataInputStream for the command socket between the client and host.
//EXISTS is a byte that the server understands as the “does file exist” command.
public boolean exists(String fileName)
{
 try
 {
 //Send the command byte and the necessary arguments.
 out.writeByte(EXISTS);
 writeString(fileName);

 //Get the result.
 return in.readBoolean();
 }
 catch(Exception s)
 {
 return false;
 }
}

AN709

 4 of 19

Figure 2. Client Block Diagram

N

FILE OPERATION

SEND COMMAND
BYTE TO SERVER

PARAMETERS
REQUIRED?

SEND PARAMETERS
TO SERVER

RESULT

EXPECTED?

READ RESULTS
FROM SERVER

RETURN

Y

Y

N

Server Software
The NetworkFileSystemHost class acts as the file system server that resides on the remote host.
This server is multithreaded and can handle multiple simultaneous connections. When the server starts,
it creates a server socket that waits for incoming connections.

//Create a socket to accept incoming connections.
ServerSocket ss = new ServerSocket(3453);
System.out.println("Server running... Waiting for connections...");
Socket sck = ss.accept();

When a new connection is requested, the server responds with a new port number to which the client
should connect and creates a new thread that listens on the given port for commands from the client.

//Open a new server socket and send its port number to the client.
//We want to keep the original free for more connections.
DataOutputStream out = new DataOutputStream(sck.getOutputStream());
ServerSocket ss2 = new ServerSocket(0);

//Start a thread to handle the new connection. The thread will
//be responsible for all file system operations.
new SessionThread(ss2).start();

out.writeInt(ss2.getLocalPort());
out.flush();

AN709

 5 of 19

The thread continues handling commands until it receives the disconnect command. The listing below
shows how the server handles this command. The server’s counterpart to the exists() function of the
TINI software is also shown.

//out is a DataOutputStream for the command socket between the client and host.
//in is a DataInputStream for the command socket between the client and host.

boolean closed = false;
while(!closed)
{
 byte command = in.readByte();
 switch(command)
 {

 case DISCONNECT:
 {
 //Close the communication socket as requested.
 in.close();
 out.close();
 sck.close();

 //Clean up all the open files held by this thread.
 closeOpenFiles(openRand);
 closeOpenFiles(openRead);
 closeOpenFiles(openWrite);

 //Set the state to closed. This will stop the main
 //loop in the run() method and allow the thread to
 //terminate.
 closed = true;
 break;

 }
 case EXISTS:
 {
 //Get the parameters for this operation.
 String fName = readString();

 //Send the result.
 File f = new File(parent, fName);
 out.writeBoolean(f.exists());
 break;
 }
 //Handle other commands here.
 }
}

Figure 3 illustrates the entire program flow for the server.

AN709

 6 of 19

Figure 3. File System Server

 FILE SYSTEM SERVER

WAIT FOR CLIENT
CONNECTION

START COMMAND
HANDLING THREAD

SEND COMMAND PORT
NUMBER TO CLIENT

COMMAND THREAD

RECEIVE COMMAND
FROM CLIENT

CLOSE ALL FILES THAT
ARE OPENED

CLOSE THE
CONNECTION

TERMINATE THREAD

N

PARAMETERS
REQUIRED?

READ PARAMETERS
FROM CLIENT

RESULT
EXPECTED?

SEND RESULT
TO CLIENT

Y

Y

N

IS COMMAND
DISCONNECT?

Y

N

AN709

 7 of 19

Running the Example

To run the example, complete the following steps:

§ Install TINIOS 1.10.

§ Include the mount and unmount commands in slush. To do this, first extract the source for the

commands from the OptionalSlushCommandsSrc.jar file and compile them. Then FTP the class files
into the /tiniext/com/dalsemi/slush/command directory on TINI. Run the following
commands at the slush prompt:

addc com.dalsemi.slush.command.MountCommand mount
addc com.dalsemi.slush.command.UnmountCommand unmount

§ Compile the two source files included with this example using the following commands:

javac –bootclasspath <TINI1.10>\bin\tiniclasses.jar NetworkFileSystemDriver.java
javac NetworkFileSystemHost.java

where <TINI1.10> is the TINI 1.10 installation directory.

§ FTP the NetworkFileSystemDriver.class file into the /tiniext directory on TINI.

§ Start the file system server with the following command:

java NetworkFileSystemHost <startDir>

where <startDir> is the directory that is visible from the TINI file system.

§ In slush, mount the file system with the following command:

mount mnt NetworkFileSystemDriver <host ip> 3453

§ where <host ip> is the IP address of the system where the server is running.

There will now be a directory in the root of TINI’s file system called “mnt.” This directory shows the
files that are available from the remote server. These files can be accessed just like files that reside in
TINI’s internal file system and are available to all processes created by slush.

Associated Files
Files associated with AN709 are located at
ftp://ftp.dalsemi.com/pub/tini/appnotes/AN709/MountedFileSystems.tgz.

Conclusion
By using the built- in TCP/IP capabilities of TINI, the standard file system can be extended without much
overhead in the TINI system. This frees the applications developed for TINI from the constraints of the
internal file system. More RAM also is made available since data files, log files, etc., can now be stored
remotely.

ftp://ftp.dalsemi.com/pub/tini/appnotes/AN709/MountedFileSystems.tgz

AN709

 8 of 19

MAXIM INTEGRATED PRODUCTS/DALLAS SEMICONDUCTOR
CONTACT INFORMATION

Company Addresses:
Maxim Integrated Products, Inc.
120 San Gabriel Drive
Sunnyvale, CA 94086
Tel: 408-737-7600
Fax: 408-737-7194

Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244
Tel: 972-371-4448
Fax: 972-371-4799

Product Literature/Samples Requests:
800-998-8800
408-737-7600

Sales and Customer Service:

World Wide Website
www.maxim-ic.com

Product Information
http://www.maxim-ic.com/MaximProducts/products.htm

Ordering Information
http://www.maxim-ic.com/BuyMaxim/Sales.htm

FTP Site:
ftp://ftp.dalsemi.com

TINI is a registered trademark of Dallas Semiconductor.
Java is a trademark of Sun Microsystems

http://www.maxim-ic.com
http://www.maxim-ic.com/MaximProducts/products.htm
http://www.maxim-ic.com/BuyMaxim/Sales.htm
ftp://ftp.dalsemi.com

AN709

 9 of 19

Appendix A
The following is the API documentation of the com.dalsemi.fs.FileSystemDriver interface.

com.dalsemi.fs
Interface FileSystemDriver

public interface FileSystemDriver

This interface is used to implement external file systems. Anyone wishing to extend TINI’s file system
must first implement this interface. The class can then be passed to the
com.dalsemi.fs.DSFile.mount() method for creation.

Nearly every method in this interface takes either a file name or a file descriptor. File names will be
Strings that do not include the name of the mount point itself. For example, if you have a mount point
named "mnt", and on the mounted file system there is a directory called test, on TINI you would access a
file in that directory by using the String "/mnt/test/myfile." The name would then be passed to the driver
as "test/myfile." When accessing mount point itself ("/mnt"), it is represented by an empty string ("").
Methods that use a file descriptor use the file descriptor returned by the openReadingFD, openWritingFD,
and openRandomFD methods. What is contained in the file descriptor is up to the developer.

Many methods also use a uid parameter. This is the uid of the person trying to perform the operation. IDs
that have the high bit set can be assumed to have administrator privileges.

Method Summary

 int available(Object fd)
 The number of bytes that can be read without blocking.

 boolean canExec(String fileName, byte uid)
 Determines if the given file is executable.

 boolean canRead(String fileName, byte uid)
 Determines if the given file is readable.

 boolean canWrite(String fileName, byte uid)
 Determines if the given file is writable.

 void close(Object fd)
 Closes the file descriptor's stream and releases any system resources used.

 boolean delete(String fileName, byte uid)
 Removes the specified file from the mounted file system.

 boolean exists(String fileName)
 Determines if the given file exists on the mounted file system.

 byte[] getContents(String fileName, byte uid)
 Gets the complete contents of a file on the mounted file system.

 long getLength(Object fd)
 Gets the length of the file represented by the file descriptor.

 long getOffset(Object fd)
 Gets the current offset into the file.

 int getOtherPermissions(String fileName)
 Gets the other (non-owner) permissions for the given file.

 int getUser(String fileName)

AN709

 10 of 19

 Gets the owner of a file.

 int getUserPermissions(String fileName)
 Gets the user/owner permissions for the given file.

 void init(String[] args)
 This method will be called the first time a mounted file system accessed.

 boolean isDirectory(String fileName)
 Determines if the given name represents a directory.

 boolean isFile(String fileName)
 Determines if the given name represents a file and not a directory.

 long lastModified(String fileName)
 Indicates the time the file was last modified.

 long length(String fileName)
 Gets the length of the file.

 String[] list(String fileName, byte uid)
 Retrieves a listing of the files in the directory specified.

 boolean mkdir(String fileName, byte uid)
 Creates a directory on the mounted file system.

 Object openRandomFD(String fileName, byte uid)
 Opens the given file for random access.

 Object openReadingFD(String fileName, byte uid)
 Opens the given file for reading.

 Object openWritingFD(String fileName, boolean append, byte uid)
 Opens the given file for writing.

 int readBytes(Object fd, byte[] data, int start, int length)
 Reads from the file represented by the file descriptor.

 boolean rename(String srcname, String destname, byte uid)
 Changes the name of a file.

 void seek(Object fd, long n)
 Moves the file pointer to a given location, measured in bytes from the beginning of the file.

 void setOtherPermissions(String fileName, int perms, byte uid)
 Changes the other (non-owner) permissions for the given file.

 void setUser(String fileName, byte newUID, byte uid)
 Sets the owner of the given file.

 void setUserPermissions(String fileName, int perms, byte uid)
 Changes the user/owner permissions for the given file.

 long skipBytes(Object fd, long n)
 Skips the next n bytes of data from the stream.

AN709

 11 of 19

 void touch(String fileName, byte uid)
 Updates the last modified time on the given file to the current time.

 void unmount()
 Allows the driver a chance to clean up and release any resources used when a mount point is removed.

 void writeBytes(Object fd, byte[] data, int start, int length)
 Writes the given data to the file represented by the file descriptor.

Method Detail

init
public void init(String[] args)
 throws Exception

This method will be called the first time a mounted file system accessed.
Parameters:
args - Any arguments needed to initialize the file system.
Throws:
Exception -

exists
public boolean exists(String fileName)

Determines if the given file exists on the mounted file system. This method should match the behavior of
java.io.File.exists().
Parameters:
fileName - The file.
Returns:
true if the file exists.

canWrite
public boolean canWrite(String fileName,
 byte uid)

Determines if the given file is writable. If the file does not exists, the driver should determine if it can be created and
return accordingly. This method should match the behavior of java.io.File.canWrite().
Parameters:
fileName - The file.
uid - The user that is trying to access the file.
Returns:
true if the file can be written by this user.

AN709

 12 of 19

canRead
public boolean canRead(String fileName,
 byte uid)

Determines if the given file is readable. This method should match the behavior of java.io.File.canRead().
Parameters:
fileName - The file.
uid - The user that is trying to access the file.
Returns:
true if the file can be read by this user.

canExec
public boolean canExec(String fileName,
 byte uid)

Determines if the given file is executable. This method should match the behavior of
com.dalsemi.fs.DSFile.canExec().
Parameters:
fileName - The file.
uid - The user that is trying to access the file.
Returns:
true if the file can be executed by this user.

isFile
public boolean isFile(String fileName)

Determines if the given name represents a file and not a directory. This method should match the behavior of
java.io.File.isFile().
Parameters:
fileName - The file.
Returns:
true if fileName represents a file.

isDirectory
public boolean isDirectory(String fileName)

Determines if the given name represents a directory. This method should match the behavior of
java.io.File.isDirectory().
Parameters:
fileName - The file.
Returns:
true if fileName represents a directory.

lastModified
public long lastModified(String fileName)

Indicates the time the file was last modified. This method should match the behavior of java.io.File.lastModified().
Parameters:
fileName - The file.
Returns:
the modification time of the file.

length
public long length(String fileName)

Gets the length of the file. This method should match the behavior of java.io.File.length().
Parameters:
fileName - The file.
Returns:
the length of the file.

AN709

 13 of 19

mkdir
public boolean mkdir(String fileName,
 byte uid)

Creates a directory on the mounted file system. This method should match the behavior of java.io.File.mkdir().
Parameters:
fileName - The name of the directory to create.
uid - The user that is trying to create the directory.
Returns:
true if the directory was created.

rename
public boolean rename(String srcname,
 String destname,
 byte uid)

Changes the name of a file. This method should match the behavior of java.io.File.renameTo(File dest).
Parameters:
srcname - The name of the file to be changed.
destname - The new name fo r the file.
uid - The user that is trying to rename the file.
Returns:
true if the file was renamed.

list
public String[] list(String fileName,
 byte uid)

Retrieves a listing of the files in the directory specified. This method should match the behavior of java.io.File.list().
Parameters:
fileName - The directory to get a listing from.
uid - The user trying to retreive the list.
Returns:
the list of files, or null if fileName doesn't represent a directory.

AN709

 14 of 19

delete
public boolean delete(String fileName,
 byte uid)

Removes the specified file from the mounted file system. This method should match the behavior of
java.io.File.delete().
Parameters:
fileName - The File to delete.
uid - The user trying to delete the file.
Returns:
true if the file was removed.

touch
public void touch(String fileName,
 byte uid)
 throws IOException

Updates the last modified time on the given file to the current time. This method should match the behavior of
com.dalsemi.fs.DSFile.touch().
Parameters:
fileName - The file to touch.
uid - The user trying to update the file.
Throws:
IOException -

setUserPermissions
public void setUserPermissions(String fileName,
 int perms,
 byte uid)
 throws IOException

Changes the user/owner permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.setUserPermissions(int perms).
Parameters:
fileName - The file.
perms - The new permissions.
uid - The user that is trying to change the file.
Throws:
IOException -

setOtherPermissions
public void setOtherPermissions(String fileName,
 int perms,
 byte uid)
 throws IOException

Changes the other (non-owner) permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.setOtherPermissions(int perms).
Parameters:
fileName - The file.
perms - The new permissions.
uid - The user that is trying to change the file.

AN709

 15 of 19

setUser
public void setUser(String fileName,
 byte newUID,
 byte uid)
 throws IOException

Sets the owner of the given file. This method should match the behavior of com.dalsemi.fs.DSFile.setUser(byte uid).
Parameters:
fileName - The file.
newUID - The new owner.
uid - The user that is trying to change the file.
Throws:
IOException -

getUserPermissions
public int getUserPermissions(String fileName)
 throws FileNotFoundException

Gets the user/owner permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.getUserPermissions().
Parameters:
fileName - The file.
Returns:
the user permissions.
Throws:
FileNotFoundException -

getOtherPermissions
public int getOtherPermissions(String fileName)
 throws FileNotFoundException

Gets the other (non-owner) permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.getOtherPermissions().
Parameters:
fileName - The file.
Returns:
the other permissions.
Throws:
FileNotFoundException -

getUser
public int getUser(String fileName)
 throws FileNotFoundException

Gets the owner of a file. This method should match the behavior of com.dalsemi.fs.DSFile.getUser().
Parameters:
fileName - The file.
Returns:
the file's owner.
Throws:
FileNotFoundException -

AN709

 16 of 19

openWritingFD
public Object openWritingFD(String fileName,
 boolean append,
 byte uid)
 throws IOException

Opens the given file for writing. The file descriptor that is returned will be used to identify the file in other driver
calls. A file descriptor can be any length and should hold any information the driver needs to identify the associated
file and the stream's state. This method should match the behavior of java.io.FileOutputStream(String name, boolean
append).
Parameters:
fileName - The name of the file to open.
append - If true and the file exists, the file should be opened and the file pointer set to the end of the file. If false and
the file exists, all contents of the file should be erased and the file's length set to 0.
uid - The user trying to open the file.
Returns:
The file descriptor.
Throws:
IOException -

openReadingFD
public Object openReadingFD(String fileName,
 byte uid)
 throws FileNotFoundException

Opens the given file for reading. The file descriptor that is returned will be used to identify the file in other driver
calls. A file descriptor can be any length and should hold any information the driver needs to identify the associated
file and the stream's state. This method should match the behavior of java.io.FileInputStream(String name).
Parameters:
fileName - The name of the file to open.
uid - The user trying to open the file.
Returns:
The file descriptor.
Throws:
FileNotFoundException -

openRandomFD
public Object openRandomFD(String fileName,
 byte uid)
 throws IOException

Opens the given file for random access. The file descriptor that is returned will be used to identify the file in other
driver calls. A file descriptor can be any length and should hold any information the driver needs to identify the
associated file and the stream's state. This method should match the behavior of java.io.RandomAccessFile(String
name, String mode).
Parameters:
fileName - The name of the file to open.
uid - The user trying to open the file.
Returns:
The file descriptor.
Throws:
IOException -

AN709

 17 of 19

writeBytes
public void writeBytes(Object fd,
 byte[] data,
 int start,
 int length)
 throws IOException

Writes the given data to the file represented by the file descriptor. This method should match the behavior of
java.io.OutputStream.write(byte[] b, int off, int len).
Parameters:
fd - The file descriptor identifying the file to write to.
data - The data to write.
start - The start offset in the data.
length - The number of bytes to write.
Throws:
IOException -

readBytes
public int readBytes(Object fd,
 byte[] data,
 int start,
 int length)
 throws IOException

Reads from the file represented by the file descriptor. This method should match the behavior of
java.io.InputStream.read(byte[] b, int off, int len).
Parameters:
fd - The file descriptor identifying the file to read from.
data - A buffer to store the data that is read.
start - The start offset in the buffer.
length - The number of bytes to read.
Returns:
the number of bytes read.
Throws:
IOException -

seek
public void seek(Object fd,
 long n)
 throws IOException

Moves the file pointer to a given location, measured in bytes from the beginning of the file. This method should
match the behavior of java.io.RandomAccessFile.seek(long pos).
Parameters:
fd - The file descriptor identifying the file.
n - The new position for the file pointer.
Throws:
IOException -

AN709

 18 of 19

skipBytes
public long skipBytes(Object fd,
 long n)
 throws IOException

Skips the next n bytes of data from the stream. This method should match the behavior of
java.io.InputStream.skip(long n) if the file descriptor represents a FileInputStream and should match the behavior of
java.io.RandomAccessFile.skipBytes(long n) if the file descriptor represents a RandomAccessFile.
Parameters:
fd - The file descriptor identifying the file.
n - The number of bytes to skip.
Returns:
The actual number of bytes skipped.
Throws:
IOException -

getOffset
public long getOffset(Object fd)
 throws IOException

Gets the current offset into the file. This method should match the behavior of
java.io.RandomAccessFile.getFilePointer().
Parameters:
fd - The file descriptor identifying the file.
Returns:
the current position of the file pointer.
Throws:
IOException -

getLength
public long getLength(Object fd)
 throws IOException

Gets the length of the file represented by the file descriptor. This method should match the behavior of
java.io.RandomAccessFile.length().
Parameters:
fd - The file descriptor identifying the file.
Returns:
the length of the file.
Throws:
IOException -

available
public int available(Object fd)
 throws IOException

The number of bytes that can be read without blocking. This method should match the behavior of
java.io.FileInputStream.available().
Parameters:
fd - The file descriptor identifying the file.
Returns:
the number of bytes available.

AN709

 19 of 19

close
public void close(Object fd)
 throws IOException

Closes the file descriptor's stream and releases any system resources used. This method should match the behavior of
java.io.FileInputStream.close(), java.io.FileOutputStream.close(), or java.io.RandomAccessFile.close() depending on
the type of file descriptor passed in.
Parameters:
fd - The file descriptor identifying the file.
Throws:
IOException -

unmount
public void unmount()

Allows the driver a chance to clean up and release any resources used when a mount point is removed.

getContents
public byte[] getContents(String fileName,
 byte uid)
 throws IOException

Gets the complete contents of a file on the mounted file system. This method will be called when the system attempts
to execute a file located on the mounted file system.
Parameters:
fileName - The file to retreive.
uid - The user trying to execute the file.
Returns:
the contents of the file.
Throws:
IOException -

