| Application Note 709
(> DALLAS AW /1K1 /W Adding An External File

System to TINI

Introduction
The standard file system of any embedded system is usually small in size. The storage space of the Tiny
Internet Interfaces (TINI®) platform is no exception. TINI's file system resides in the on-board RAM
and is limited by the size of this RAM. Because of this constraint, it is important to provide aternatives
for data storage.

This application note describes a technique for adding an external file system. By providing a method of
accessing other file systems, TINI users no longer are limited in the type and amount of information they
can process. Since TINI also uses its RAM as its operating heap, using a remote file system allows more
of the RAM to be used for running applications.

Once afile system has been mounted, there appears to be no difference between afile that resides on the
local file system and one that is externa. All interactions with files occur through the standard
j ava. i o classesand thecom dal seni . fs. DSFi | e class.

System Overview

There ae three dseps to implementing an externa file system. First, the
com dal semi . fs. Fil eSystenDriver interface must be implemented. This class can use a native
library, rely on a server running elsewhere (like the example included in this application note), or any
number of other options. Second, the class (or classes) must be made available to any process that uses
the external file system. This can be done by placing a copy of the class in TINI's classpath or by
building it directly into any application that will use the new file system. Finally, the file system needs to
be mounted. This is done by either calling the com dal seni . fs. DSFi | e. nount () method from inside
an application or using the mount command in dush.

The com dal sem . fs. Fil eSystenDri ver interface has been written so that a variety of
systems can be implemented. The developer has the freedom to handle files in a manner that is
appropriate for his design. Possibilities include a Network File System (NFS), an FTP file system where
files are written to and read from an FTP server, or an IDE disk drive connected to TINI. This example
uses a custom design that uses TINI's onboard TCP/IP network stack to access files from a remote
server. Figure 1 shows the system’s configuration. TINI’ s file system holds a reference to the file system
driver. Whenever a remote file is accessed, the appropriate method in the driver is called. The driver
then communicates with the remote host over the network to process the request.

lof 19 081202

AN709

Figure 1. System Block Diagram

TINI
FILE SYSTEM SERVER
REMOTE FS > REMOTE FS
DRIVER < HOST

TINI Software

Net wor kFi | eSystenDri ver IS the class that implements the com dal seni . fs. Fil eSystenDriver
interface. The driver'si ni t () method is called automatically whenever afile system is mounted. This
gives the driver an opportunity to perform any initialization that might be necessary. Some examples
include resetting and initializing hardware, allocating buffers, and establishing network connections. In
this example, the i ni t () method attempts to establish a socket connection with the remote server
specified in the parameters. Upon a successful connection, the server sends a new port number that the
driver must use to send file system commands. This allows the original port to remain open for

additional connections.

Dat al nput Streamin = nul|;
Dat aQut put Stream out = nul | ;
Socket sck = null;

public void init(String[] args) throws Exception

{

//args[0] is IP address of file system server.

/largs[1] is the port to connect to.

int port = Integer.parselnt(args[1]);

int newPort = 0;

try

{
sck = new Socket (args[0], port);
// Once connected the server will send back a new port to connect
//to. This way the original server port will remain available
//for additional connections.
in = new Dat al nput Strean(sck. getlnputStrean());
newPort = in.readlnt();

}

finally

{
if(in!=null) {in.close();}
if(sck '= null) {sck.close();}

}

/1 Open the new socket and get its input and output streans.

/[ITWe'Il wap themin Data streans for convenience.

sck = new Socket (args[0], newPort);

in = new Dat al nput St rean(sck. getlnputStrean());

out = new Dat aQut put St ream(sck. get Qut put Strean());

}

20f 19

AN709

The unnmount () method of the driver is called when the file system is unmounted. The driver should
use this method to release any resources it may be using (e.g., buffers, network connections, ports, etc.).
In the example presented here, the driver attempts to notify the server it is about to disconnect. The
driver then closes the connection it has with the server.

public void unmount ()

{
try
{
try
/1 Send the command byte.
//This will notify the server it can close its end.
out.witeByte(CLOSE);
}
finally
{
/W don't care what the server does, we still need to close our end.
in.close();
out.close();
sck. cl ose();
}
}
catch(1l OException x)
{
}
}

The remaining methods in the class are al file system operations (e.g., open, close, read, write, etc.).
Each follows the flow chart shown in Figure 2. These methods were kept as simple as possible in order
to put most of the workload onto the server. An example implementation of one of the file system
operations (File.exists()) is given below.

/lout is a DataQutputStreamfor the command socket between the client and host.
/lin is a Datal nputStreamfor the command socket between the client and host.
/TEXISTS is a byte that the server understands as the “does file exist” comuand.
publ i c bool ean exists(String fil eName)

{
try
{
/1 Send the command byte and the necessary argunents.
out.witeByte(EXI STS);
writeString(fil eName);
/1 Cet the result.
return in.readBool ean();
}
catch(Exception s)
{
return false;
}
}

3of 19

AN709

Figure 2. Client Block Diagram

FILE OPERATION

SEND COMMAND
BYTE TO SERVER

PARAMETERS SEND PARAMETERS
REQUIRED? TO SERVER
READ RESULTS
EXF;%SCL{I-IEI—D,) FROM SERVER

RETURN

Server Software

The Net wor kFi | eSyst emHost class acts as the file system server that resides on the remote host.
This server is multithreaded and can handle multiple smultaneous connections. When the server starts,
it creates a server socket that waits for incoming connections.

// Create a socket to accept incom ng connections.

Server Socket ss = new Server Socket (3453);
Systemout.println("Server running... Waiting for connections...");
Socket sck = ss.accept();

When a new connection is requested, the server responds with a new port number to which the client
should connect and creates a new thread that listens on the given port for commands from the client.

/1 Open a new server socket and send its port nunber to the client.
/I'We want to keep the original free for nore connections.

Dat aQut put Stream out = new Dat aQut put St ream(sck. get Qut put Stream()) ;
Server Socket ss2 = new Server Socket (0);

//Start a thread to handl e the new connection. The thread wil|l
/1 be responsible for all file system operations.
new Sessi onThread(ss2).start();

out.witelnt(ss2. getLocal Port());
out.flush();

40f 19

AN709

The thread continues handling commands until it receives the disconnect command. The listing below
shows how the server handles this command. The server’s counterpart to theexi st s() function of the
TINI software is aso shown.

//out is a DataQutputStreamfor the command socket between the client

/lin is a Datal nputStreamfor the command socket

bool ean cl osed = fal se;
whi | e(! cl osed)

{

byte command = in.readByte();
swi t ch(command)

{

}

case DI SCONNECT:
{
/1 Cl ose the conmuni cati on socket as requested.
in.close();
out.close();
sck. cl ose();

[/ Clean up all the open files held by this thread.
cl oseOpenFi | es(openRand) ;
cl oseOpenFi | es(openRead) ;
cl oseOpenFil es(openWite);

/1 Set the state to closed. This will stop the main
/11oop in the run() method and allow the thread to
/ltermnate.

cl osed = true;

br eak;

case EXI STS

{

/1 Get the parameters for this operation.
String fName = readString();

/1 Send the result.

File f = new Fil e(parent, fNanme);
out.writeBool ean(f.exists());

br eak;

/ / Handl e ot her conmands here.

}

Figure 3 illustrates the entire program flow for the server.

50f 19

and host.
bet ween the client and host.

AN709

Figure 3. File System Server

(FILE SYSTEM SERVER)

v

WAIT FOR CLIENT
CONNECTION

—P FROM CLIENT

{

START COMMAND
HANDLING THREAD

v

SEND COMMAND PORT
NUMBER TO CLIENT

< COMMAND THREAD) < TERMINATE THREAD)

v

T

RECEIVE COMMAND

CLOSE THE
CONNECTION

CLOSE ALL FILES THAT

EXPECTED?

IS COMMAND v
DISCONNECT? —> ARE OPENED
PARAMETERS READ PARAMETERS
REQUIRED? FROM CLIENT
RESULT SEND RESULT
TO CLIENT

60f 19

AN709

Running the Example
To run the example, complete the following steps:
= [Instal TINIOS 1.10.

= Includethe mount and unnmount commandsin dush. To do this, first extract the source for the
commands from the Optional SlushCommandsSrc.jar file and compile them. Then FTP the class files

intothe/ ti ni ext/ com dal sem / sl ush/ command directory on TINI. Run the following
commands at the slush prompt:

addc com dal seni . sl ush. conmand. Mount Command nount
addc com dal seni . sl ush. conmand. Unnount Command unnount

= Compile the two source files included with this example using the following commands:

javac —bootcl asspath <TI NI 1.10>\bin\tiniclasses.jar NetworkFileSystenDriver.java
j avac Networ kFi | eSyst enHost . j ava

where <TINI1.10> isthe TINI 1.10 installation directory.
= FTPtheNet wor kFi | eSystenDri ver. cl ass fileinto the/ ti ni ext directory on TINI.
= Start the file system server with the following command:
java Networ kFi | eSyst entHost <startDir>
where<st ar t Di r > is the directory that is visible from the TINI file system.
= In dlush, mount the file system with the following command:
mount mnt Networ kFi | eSystenDriver <host ip> 3453
= where<host i p> isthe IP address of the system where the server is running.

There will now be a directory in the root of TINI's file system called “mnt.” This directory shows the
files that are available from the remote server. These files can be accessed just like files that reside in
TINI’sinternal file system and are available to all processes created by sush.

Associated Files
Files associated with AN709 are located at
ftp://ftp.dal semi.com/pub/tini/appnotes/ AN 709/M ountedFil eSystems.tgz.

Conclusion

By using the built-in TCP/IP capabilities of TINI, the standard file system can be extended without much
overhead in the TINI system. This frees the applications developed for TINI from the constraints of the
internal file system. More RAM aso is made available since data files, log files, etc., can now be stored
remotely.

7of 19

ftp://ftp.dalsemi.com/pub/tini/appnotes/AN709/MountedFileSystems.tgz

AN709

MAXIM INTEGRATED PRODUCTS/DALLAS SEMICONDUCTOR

CONTACT INFORMATION

Company Addresses:

Maxim Integrated Products, Inc.
120 San Gabrid Drive
Sunnyvale, CA 94086

Tel: 408-737-7600

Fax: 408-737-7194

Dallas Semiconductor
4401 S. Beltwood Parkway
Dadlas, TX 75244

Tel: 972-371-4448

Fax: 972-371-4799

Product Literature/Samples Requests:
800-998-8800
408-737-7600

TINI is a registered trademark of Dallas Semiconductor.

Java is a trademark of Sun Microsystems

Sales and Customer Service:

World Wide Website

WWW.Mmaxintic.com

Product I nformation
http://www.maxim-ic.com/M aximProducts/products.htm

Ordering Information
http://www.maxim-ic.com/BuyM axim/Sales.htm

FTP Site:
ftp://ftp.dalsemi.com

8of 19

http://www.maxim-ic.com
http://www.maxim-ic.com/MaximProducts/products.htm
http://www.maxim-ic.com/BuyMaxim/Sales.htm
ftp://ftp.dalsemi.com

AN709

Appendix A
The following is the API documentation of the com dal seni . fs. Fi | eSyst enDri ver interface.

com.dalsemi.fs
Interface FileSystemDriver

public interface FileSystemDriver

This interface is used to implement external file systems. Anyone wishing to extend TINI’s file system
must first implement this inteface. The «class can then be passed to the
com dal seni . fs. DSFi | e. nount () method for creation.

Nearly every method in this interface takes either a file name or a file descriptor. File names will be
Strings that do not include the name of the mount point itself. For example, if you have a mount point
named "mnt", and on the mounted file system there is a directory called test, on TINI you would access a
file in that directory by using the String "/mnt/test/myfile." The name would then be passed to the driver
as "test/myfile." When accessing mount point itself ("/mnt"), it is represented by an empty string ("").
Methods that use a file descriptor use the file descriptor returned by the openReadingFD, openWritingFD,
and openRandomFD methods. What is contained in the file descriptor is up to the developer.

Many methods also use a uid parameter. Thisis the uid of the person trying to perform the operation. IDs
that have the high bit set can be assumed to have administrator privileges.

Method Summary

i nt |avai |l abl e(Obj ect fd)
The number of bytesthat can be read without blocking.

bool ean |canExec(String fil eName, byte uid)
Determinesif the given fileis executable.

bool ean |canRead(String fil eName, byte uid)
Determinesif the given fileisreadable.

bool ean|canWite(String fil eName, byte uid)
Determinesif the given fileis writable.

voi d|cl ose(Object fd)
Closesthe file descriptor's stream and rel eases any system resources used.

bool ean |del ete(String fil eName, byte uid)
Removes the specified file from the mounted file system.

bool ean |exi sts(String fil eNane)
Determinesif the given file exists on the mounted file system.

byte[] |getContents(String fil eNanme, byte uid)
Gets the compl ete contents of afile on the mounted file system.

| ong |get Lengt h(Obj ect fd)
Getsthe length of thefile represented by the file descriptor.

| ong |get Of fset (Obj ect fd)
Gets the current offset into the file.

i nt |get Ot herPerni ssions(String fil eNane)
Gets the other (non-owner) permissions for the given file.

int laetUser(Strina fil eNane)

9of 19

AN709

Gets the owner of afile.

i nt |get User Perm ssions(String fil eNane)
Gets the user/owner permissions for the givenfile.
void|init(String[] args)
This method will be called the first time a mounted file system accessed.
bool ean|i sDirectory(String fil eNanme)
Determinesif the given name represents a directory.
bool ean |i sFile(String fil eNane)
Determinesif the given name represents a file and not a directory.
long |l ast Modi fied(String fil eName)
Indicates the time the file was last modified.
long |l ength(String fil eNane)
Getsthe length of thefile.
String[] [list(String fileNane, byte uid)
Retrieves alisting of the filesin the directory specified.
bool ean|nkdir(String fil eNanme, byte uid)
Creates adirectory on the mounted file system.
Obj ect |openRandonFD(String fil eName, byte uid)
Opens the given file for random access.
Obj ect |openReadi ngFD(String fil eNane, byte uid)
Opens the given file for reading.
Obj ect |openWitingFD(String fil eNane, bool ean append, byte uid)
Opens the given file for writing.
i nt [readBytes(Cbject fd, byte[] data, int start, int |ength)
Reads from the file represented by the file descriptor.
bool ean |renane(String srcname, String destnane, byte uid)
Changes the name of afile.
voi d|seek(Object fd, long n)
Moves the file pointer to agiven location, measured in bytes from the beginning of thefile.
voi d|set Ot her Permi ssions(String fileName, int pernms, byte uid)
Changes the other (non-owner) permissions for the given file.
voi d|setUser(String fileName, byte newU D, byte uid)
Setsthe owner of the given file.
voi d|set User Perm ssions(String fil eName, int perns, byte uid)
Changes the user/owner permissionsfor the given file.
| ong |ski pBytes(Obj ect fd, |ong n)

Skips the next n bytes of datafrom the stream.

10 of 19

AN709

void|touch(String fileNane, byte uid)
Updates the last modified time on the given file to the current time.

voi d {unnmount ()
Allowsthe driver a chance to clean up and release any resources used when a mount point is removed.

void|witeBytes(Object fd, byte[] data, int start, int |length)
Writes the given datato the file represented by the file descriptor.

Method Detail

Init
public void init(String[] args)
t hrows Exception
This method will be called the first time a mounted file system accessed.
Parameters:
ar gs - Any arguments needed to initialize the file system.
Throws:
Exception -

exists
publ i c bool ean exists(String fil eName)
Determinesif the given file exists on the mounted file system. This method should match the behavior of
javaio.File.exist().
Parameters:
fil eName - Thefile.
Returns:
trueif thefile exists.

canWrite
public boolean canWite(String fil eNane,
byte uid)
Determinesif the given file iswritable. If the file does not exists, the driver should determine if it can be created and
return accordingly. This method should match the behavior of java.io.File.canWrite().
Parameters:
fil eNane - Thefile.
ui d - The user that istrying to access thefile.
Returns:
trueif the file can be written by this user.

11 of 19

AN709

canRead
publ i ¢ bool ean canRead(String fil eNane,
byte uid)
Determinesif the given file is readable. This method should match the behavior of java.io.File.canRead().
Parameters:

fil eNanme - Thefile.

ui d - The user that istrying to access thefile.
Returns:

trueif thefile can be read by this user.

cankExec
public bool ean canExec(String fil eName,
byte uid)
Determinesif the given file is executable. This method should match the behavior of
com.dalsemi.fs.DSFile.canExec().
Parameters:
fil eNane - Thefile.
ui d - The user that istrying to access thefile.
Returns:
trueif the file can be executed by this user.

isFile
public boolean isFile(String fil eName)
Determinesif the given name represents afile and not a directory. This method should match the behavior of
javaio.File.isFile().
Parameters:
fil eName - Thefile.
Returns:
trueif fileName represents afile.

IsDirectory
public boolean isDirectory(String fil eNanme)
Determinesif the given name represents a directory. This method should match the behavior of
java.io.File.isDirectory().
Parameters:
fil eNane - Thefile.
Returns:
trueif fileName represents a directory.

lastModified

public long |lastMdified(String fil eNane)
Indicates the time the file was last modified. This method should match the behavior of javaio.File.lastModified().
Parameters:
fil eNanme - Thefile.
Returns:
the modification time of thefile.

length
public long length(String fil eName)
Gets the length of the file. This method should match the behavior of java.io.File.length().
Parameters:
fil eName - Thefile.
Returns:
the length of thefile.

12 of 19

AN709

mkdir
publ i c boolean nkdir(String fil eNane,
byte uid)
Creates adirectory on the mounted file system. This method should match the behavior of java.io.File.mkdir().
Parameters:

fi | eNanme - The name of the directory to create.
ui d - The user that istrying to create the directory.
Returns:

trueif the directory was created.

rename
public bool ean rename(String srcname,
String destnane,
byte uid)
Changes the name of afile. This method should match the behavior of java.io.File.renameTo(File dest).
Parameters:
sr cname - The name of thefileto be changed.
dest name - The new namefor thefile.
ui d - The user that istrying to rename thefile.
Returns:
trueif the file was renamed.

list
public String[] list(String fil eNane,
byte uid)
Retrieves alisting of the filesin the directory specified. This method should match the behavior of java.io.File.list().

Parameters:

fi | eNane - Thedirectory to get alisting from.

ui d - The user trying to retreive the list.

Returns:

thelist of files, or null if fileName doesn't represent a directory.

13 of 19

AN709

delete

publ i c bool ean delete(String fil eNane,
byte uid)
Removes the specified file from the mounted file system. This method should match the behavior of
javaio.File.delete().
Parameters:
fil eNane - The Fileto delete.
ui d - Theuser trying to delete thefile.
Returns:
true if the file was removed.

touch
public void touch(String fil eNane,
byte uid)
throws | OException
Updates the last modified time on the given file to the current time. This method should match the behavior of
com.dalsemi.fs.DSFile.touch().
Parameters:
fil eNane - Thefileto touch.
ui d - The user trying to update thefile.
Throws:

| OException -

setUser Per missions
public void setUserPerm ssions(String fil eNane,
i nt perns,
byte uid)
throws | OException
Changes the user/owner permissions for the given file. This method should match the behavior of
com.dal semi.fs.DSFile.setUserPermissions(int perms).
Parameters:
fil eNane - Thefile.
per s - The new permissions.
ui d - The user that istrying to change thefile.
Throws:

| OException -

setOther Per missions

public void setOQ herPerm ssions(String fil eNane,
i nt perns,
byte uid)
throws | OExcepti on

Changes the other (non-owner) permissions for the given file. This method should match the behavior of
com.dal semi.fs.DSFile.setOtherPermissions(int perms).
Parameters:
fil eName - Thefile.
per s - The new permissions.
ui d - The user that istrying to change the file.

14 of 19

AN709

setUser

public void setUser(String fil eNane,
byt e newUl D,
byte uid)

throws | OExcepti on
Sets the owner of the given file. This method should match the behavior of com.dalsemi.fs.DSFile.setUser(byte uid).
Parameters:
fil eName - Thefile.
newUl D- The new owner.
ui d - Theuser that istrying to change thefile.
Throws:

| OException -

getUser Per missions
public int getUserPerm ssions(String fil eNane)
throws Fil eNot FoundExcepti on
Gets the user/owner permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.getUserPermissions().
Parameters:
fil eNane - Thefile.
Returns:
the user permissions.
Throws:
FileNotFoundException -

getOther Per missions
public int getQherPerm ssions(String fil eName)
throws Fil eNot FoundExcepti on
Getsthe other (non-owner) permissions for the given file. This method should match the behavior of
com.dalsemi.fs.DSFile.getOtherPermissions().
Parameters:
fil eNane - Thefile.
Returns:
the other permissions.
Throws:
FileNotFoundException -

getUser
public int getUser(String fil eNane)
t hrows Fil eNot FoundExcepti on
Getsthe owner of afile. This method should match the behavior of com.dal semi.fs.DSFile.getUser().
Parameters:
fil eName - Thefile.
Returns:
thefile's owner.
Throws:
FileNotFoundException -

15 of 19

AN709

openWritingkFD
public Object openWitingFD(String fil eNane,
bool ean append,
byte uid)
t hrows | CException
Opensthe given file for writing. The file descriptor that is returned will be used to identify the file in other driver
calls. A file descriptor can be any length and should hold any information the driver needs to identify the associated
file and the stream's state. This method should match the behavior of java.io.FileOutputStream(String name, boolean
append).
Parameters:
fi | eNanme - The name of thefile to open.
append - If true and the file exists, the file should be opened and the file pointer set to the end of thefile. If false and
thefile exists, all contents of the file should be erased and the file's length set to O.
ui d - The user trying to open thefile.
Returns:
Thefile descriptor.
Throws:

| OException -

openReadingFD
public Object openReadi ngFD(String fil eNane,
byte uid)
t hrows Fil eNot FoundExcepti on
Opensthe given file for reading. The file descriptor that is returned will be used to identify the filein other driver
calls. A file descriptor can be any length and should hold any information the driver needs to identify the associated
file and the stream's state. This method should match the behavior of java.io.Filel nputStream(String name).
Parameters:
fi | eNanme - The name of thefile to open.
ui d - The user trying to open thefile.
Returns:
Thefile descriptor.
Throws:
FileNotFoundException -

openRandomFD
public Object openRandonFD(String fil eNane,
byte uid)
t hrows | CException
Opensthe given file for random access. The file descriptor that is returned will be used to identify the file in other
driver calls. A file descriptor can be any length and should hold any information the driver needs to identify the
associated file and the stream'’s state. This method should match the behavior of java.io.RandomA ccessFile(String
name, String mode).
Parameters:
fi | eName - The name of the fileto open.
ui d - The user trying to open thefile.
Returns:
Thefile descriptor.
Throws:

| OException -

16 of 19

AN709

writeBytes
public void witeBytes(Object fd,
byte[] data,
int start,
int |ength)
throws | OException
Writes the given datato the file represented by the file descriptor. This method should match the behavior of
javaio.OutputStream.write(byte[] b, int off, int len).
Parameters:
f d - Thefile descriptor identifying the file to write to.
dat a - The datato write.
st art - Thestart offset in the data.
| engt h - The number of bytesto write.
Throws:

| OException -

readBytes
public int readBytes(Object fd,
byte[] data,
int start,
int | ength)
throws | OExcepti on
Reads from the file represented by the file descriptor. This method should match the behavior of
javaio.lnputStream.read(byte[] b, int off, int len).
Parameters:
f d - Thefile descriptor identifying the fileto read from.
dat a - A buffer to store the datathat isread.
st art - Thestart offset in the buffer.
| engt h - The number of bytesto read.
Returns:
the number of bytesread.
Throws:
| OException -

seek
public void seek(Ohject fd,
| ong n)
throws | OExcepti on
Moves the file pointer to a given location, measured in bytes from the beginning of the file. This method should
match the behavior of java.io.RandomA ccessFile.seek(long pos).
Parameters:
f d - Thefile descriptor identifying the file.
n - The new position for the file pointer.
Throws:

| OException -

17 of 19

AN709

skipBytes
public | ong skipBytes(Object fd,
| ong n)
t hrows | CException
Skips the next n bytes of datafrom the stream. This method should match the behavior of
java.io.lnputStream.skip(long n) if the file descriptor represents a Filel nputStream and should match the behavior of
java.io.RandomA ccessFile.skipBytes(long n) if the file descriptor represents a RandomA ccessFile.
Parameters:
f d - Thefile descriptor identifying thefile.
n - The number of bytesto skip.
Returns:
The actual number of bytes skipped.
Throws:

| OException -

getOffset

public long getOffset(Object fd)
throws | OExcepti on
Getsthe current offset into the file. This method should match the behavior of
java.io.RandomA ccessFile.getFilePointer().
Parameters:
f d - Thefile descriptor identifying the file.
Returns:
the current position of the file pointer.
Throws:

| OException -

getLength
public | ong getlLength(Cbject fd)
throws | OException
Getsthe length of the file represented by the file descriptor. This method should match the behavior of
java.io.RandomA ccessFile.length().
Parameters:
f d - Thefile descriptor identifying the file.
Returns:
the length of thefile.
Throws:

| OException -

available

public int avail abl e(Object fd)
throws | OExcepti on
The number of bytes that can be read without blocking. This method should match the behavior of
java.io.FilelnputStream.available().
Parameters:
f d - Thefile descriptor identifying the file.
Returns:
the number of bytes available.

18 of 19

AN709

close
public void close(CObject fd)
throws | OExcepti on
Closesthe file descriptor's stream and rel eases any system resources used. This method should match the behavior of
java.io.FilelnputStream.close(), java.io.FileOutputStream.close(), or java.io.RandomA ccessFile.close() depending on
the type of file descriptor passed in.
Parameters:
f d - Thefile descriptor identifying thefile.
Throws:
| OException -

unmount
public void unnmount ()
Allowsthe driver achance to clean up and release any resources used when a mount point is removed.

getContents
public byte[] getContents(String fil eNane,
byte uid)
throws | OExcepti on
Gets the conmpl ete contents of a file on the mounted file system. This method will be called when the system attempts
to execute afile located on the mounted file system.
Parameters:
fil eNanme - Thefiletoretreive.
ui d - The user trying to execute thefile.
Retur ns:
the contents of thefile.
Throws:

| OException -

19 of 19

